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We consider a driven dissipative two-state system subject to periodic modulation ofbothof its two param-
eters. The exact master equation that governs the dynamics is derived. Closed form analytical solutions are
presented within the noninteracting-blip approximation for the stochastic forces, and for theexactlysolvable
casea51/2 of the Ohmic viscosity. We apply these results to a tight-binding particle with zero intrinsic bias.
Selection rules are obeyed for arbitrary dissipation. For Ohmic dissipation, the effects of fast asymmetry
modulation result in an overallreductionof quantum coherence and in a possible localization. On the contrary,
a multiplicative modulation of the tunneling coupling leads to an exponentialenhancementof tunneling.
@S1063-651X~96!50910-4#

PACS number~s!: 05.30.2d, 05.40.1j, 33.80.Be

The problem of a quantum particle coupled to a thermal
bath and tunneling through the barrier of a slightly asymmet-
ric double-well potential is ubiquitous in many physical and
chemical systems. It can model for example long range
electron-transfer reactions@1#, the tunneling of atoms be-
tween an atomic-force microscope tip and a surface@2#, or
the magnetic flux in a superconducting quantum interference
device ~SQUID! @3#. At sufficiently low temperatures the
dynamics only involves the ground states of the potential
minima, and the system can be effectively restricted to the
two-dimensional Hilbert space spanned by the two ground
states. This two-level system~TLS!, when isolated from the
thermal bath, is the simplest system exhibiting quantum in-
terference effects, as it can be prepared to oscillate clockwise
between the eigenstates in the left and right well. Quite gen-
erally, the stochastic influence results in a reduction of the
coherent tunneling motion by incoherent processess@4,5#,
and may even lead to a transition to self-trapping at zero
temperature@6#. An important question is to which degree
the tunneling dynamics is influenced by externally applied
time-dependent fields. Up to now, only the effects of an ex-
ternal ac field modulating the asymmetry energy between the
localized states were considered@7–15#. In particular, a com-
plete destruction of tunneling can be induced by a coherent
driving field of appropriate frequency and strength@7#. This
effect can be stabilized in the presence of dissipation@8,10#.
The transition temperature, above which quantum coherence
is destroyed by a stochastic environment, is modified by a
driving field @10#. A novel non-Markovian dynamics may
arise due to driving induced correlations between tunneling
transitions@9,11,12#. The response to the weak coherent sig-
nal @13,14# or the asymptotic tunneling amplitude@15# may
be enhanced for optimal values of the stochastic forces.

In this work we generalize the model to include the pos-
sibility of external~multiplicativeor additive! modulation of
the coupling energy between the localized states. As a work-
ing model we consider the time-dependent spin-boson
Hamiltonian where the bath is described as an ensemble of
harmonic oscillators with a bilinear coupling in the TLS-bath
coordinates
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Here thes ’s are Pauli matrices, and the eigenstates ofsz are
the basis states in a localized representation whered is the
tunneling distance. The tunneling splitting energy is given by
\D(t) while the asymmetry energy is\«(t). This time de-
pendence of the coupling parameter could arise, for example,
from an ac modulation of the barrier height or width of the
underlying double-well potential, and could be realized in a
superconducting loop with two Josephson junctions@3#. The
case of a dichotomically fluctuating tunneling coupling in
bridge-assisted electron-transfer has recently been investi-
gated in@16#. We observe that, as expressed by Eq.~8! be-
low, while the effect of asymmetry modulation is additive, a
barrier modulation results in amultiplicative ~exponential!
modification of the coupling parameter@17#.

In the following we derive exact formal solutions for the
dissipative dynamics and discuss closed form solutions
within the noninteracting-blip approximation~NIBA ! for the
stochastic forces. Selection rules for the asymptotic dynam-
ics are found. Further, for the special casea51/2 of the
Ohmic viscosity, we obtainexactresults. We then apply our
findings to study the influence of a periodic modulation of
the tunneling splitting of asymmetricTLS in an Ohmic en-
vironment. In contrast to the case of asymmetry driving,
which implies an overallreductionof quantum coherence by
fast ac fields and a possible localization in one of the tight-
binding states, we find a possibleenhancementof quantum
coherence, and always an increase in the relaxation rate.

Suppose now that at timest,0 the particle is held at the
site sz51 with the bath having a thermal distribution. We
then compute the probabilitŷsz(t)&[P(t) at timest>0 for
this factorizing initial state. After tracing out the thermal
bath, all environmental effects are captured by the twice-
integrated bath correlation function@4,5# (b51/kBT)
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whereJ(v)5(p/2)(a(ca
2/mava)d(v2va) is the spectral

density of the heat bath. Upon summing over the history of
the system’s visits of the four states of the reduced density
matrix, we can generalize previous findings for the evolution
of an asymmetry driven damped system@9,11,12# to find the
formal solution in the form of a series in the number of
time-ordered tunneling transitions. Introducing the notation
dn5) j51

2n D(t j ), it reads
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Here thej charges label the two off-diagonal states of the
reduced density matrix. The phaseFn describes the influ-
ence of the time-dependent biasing forces,

Fn5(
j51

n

j j@g~ t2 j !2g~ t2 j21!#, ~4!

whereg(t)5* tdt8«(t8). All the dissipative influences are in
the functionsFn

(6) To express them in compact form, we
introduce the functionsQj ,k5Q(t j2tk) and

L j ,k5Q2 j ,2k218 1Q2 j21,2k8 2Q2 j ,2k8 2Q2 j21,2k218 ,

Xj ,k5Q2 j ,2k119 1Q2 j21,2k9 2Q2 j ,2k9 2Q2 j21,2k119 ,

whereQ8(t) andQ9(t) are the real and imaginary part of the
bath correlation functionQ(t), respectively. Denoting asso-
journs the periodst2 j,t8,t2 j11 in which the system is in a
diagonal state, and asblips the periodst2 j21,t8,t2 j in
which the system stays in one of the two off-diagonal states
~cf. Refs.@4,5#!, the functionL j ,k describes the interblip cor-
relations of the blip pair$ j ,k%, while the functionXj ,k de-
scribes the correlations of the blipj with a preceding sojourn
k. Then, all intrablip and interblip correlations ofn blips are
combined in the expression
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Upon introducing the influence phases describing the corre-
lations between thekth sojourn and then2k succeeding
blips,hn,k5( j5k11

nj jXj ,k , the full influence functions take
the form

Fn
~1 !5Gn)

k50

n21

coshn,k , Fn
~2 !5Fn

~1 !tanhn,0 . ~5!

Up to now our results are exact. Further, having captured the
bath and driving correlations in the influence functions
Fn
(6) and in the coefficientsCn

(6) respectively, the exact

master equation for the probabilityP(t) can be derived from
Eq. ~2! as prescribed in Ref.@12#. It reads

Ṗ~ t !5E
0

t

dt8@K ~2 !~ t,t8!2K ~1 !~ t,t8!P~ t8!#, ~6!

where the kernelsK (6)(t,t8) are defined by a series expres-
sion in dn . In particular, within the NIBA@4#, which is for-
mally obtained neglecting the interblip correlations
(L j ,k50) and all blip-sojourn correlations (Xj ,k50 for j
Þk11), the kernels in Eq.~6! reduce to the expressions

K ~1 !~ t,t8!5e2Q8~ t2t8!cos@Q9~ t2t8!#C1
~1 !~ t,t8!,

K ~2 !~ t,t8!5e2Q8~ t2t8!sin@Q9~ t2t8!#C1
~2 !~ t,t8!. ~7!

It is interesting to observe that the polaron transformation
approach discussed in@10,16# leads@18#, if applied to the
Hamiltonian~1!, to a master equation analogous to Eq.~6!,
and with kernels~7!.

Let us now focus on the effect of ac modulation of the
TLS parameters in the driven Hamiltonian~1!. We shall as-
sume the analytic forms

«~ t !5e01ecosVet, D~ t !5D0exp~dcosVdt !, ~8!

where e0 and D0 represent the asymmetry energy and the
tunneling coupling in the absence of driving fields, respec-
tively. The effects of asymmetry modulation@i.e., d50 in
Eq. ~8!# have been the object of intense research in the past
years@8–12#. This we shall denote as situation I. For com-
parison, we performed the analysis of the dissipative TLS
dynamics under~on physical grounds small! modulation
of the tunneling splitting@e50, d,1 in Eq. ~8!#. This we
shall indicate as situation II. Further, we introduce a sub-
script z5e or d which, refers to quantities in case I or II,
respectively. Equation~6! is conveniently solved by Laplace
transformation. Introducing the Laplace transformP̂(l)
5*0

`dte2ltP(t) of P(t), one finds

l P̂~l!511E
0

`

dte2lt@K̂l
~2 !~ t !2K̂l

~1 !~ t !P~ t !#, ~9!

where K̂l
(6)(t)5*0

`dt8e2lt8K (6)(t1t8,t). For case I or II
the kernelsK̂l

(6)(t) have the periodicity of the external field
and can be expanded in Fourier series,

K̂l
~6 !~ t !5 (

m52`

`

km
6~l!e2 imVzt, ~10!

hence allowing a recursive solution@11#. Some features of
the two different realizations can now be discussed

~i! For a TLS with intrinsic biase0Þ0, the asymptotic
dynamics is in both cases periodic in time with the periodic-
ity 2p/Vz of the driving force, i.e., limt→`P(t)
5P(as)(t)5(mpme

2 imV j t where

p05
k0

2~0!

k0
1~0!

2 (
mÞ0

km
1~0!

k0
1~0!

pm ,

and formÞ0
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For case I, within the NIBA, the functionskm

6 are explicitly
given in @11#. For case II we obtain

km
2~l!5~21!mD0

2E
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`
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Vdt

2 D ,
whereI m(z) denotes the modified Bessel function.

~ii ! For asymmetricTLS, spatial symmetry properties of
the kernelskm

6(l) imply that all the Fourier components of
P(as)(t) with evenindex vanish in case I@11#. We find here
that all the harmonics vanish in case II. We note that the
same selection rules are known to hold in driven classical
symmetric systems@19#.

~iii ! As shown by Eqs.~6! or ~9!, the transient as well as
the long-time dynamics depends on a complicated interplay
between the stochastic and driving forces. Some simplifica-
tions are allowed when a separation of time scales is pos-
sible. Here we shall focus on the interesting high frequency
regimeVz@tK

21 wheretK is the characteristic time of the
transient dynamics. In this approximation, the kernelsK̂l

(6)

3(t) in Eq. ~9! can be substituted with their average
k0

6(l) over a period. One obtains~for convenience we ex-
plicitly indicate the field dependence!,

P̂~l!5
11k0

2~l;z!/l

l1k0
1~l;z!

, ~12!

where the conditionVz@tK
21.ulu has to be proofed self-

consistently. Thus, a fast field suppresses the periodic long-
time oscillations, and the TLS approaches incoherently the
steady valuep05k0

2(0;z)/k0
1(0;z) with relaxation rate

k0
1(0;z)[Gz . For case II the relaxation rateGd is immedi-
ately evaluated from Eq.~11!. For case I, the corresponding
rate Ge is obtained again from Eq.~11! by substituting
I 0„2dcos(Vdt/2)… with J0„(2e/Ve)sin(Vet/2)…, whereJ0(z)
is the zero order Bessel function of first kind. Finally, in the
limit z→0 the modified ratesGz reduce to the static one
G0 @4,5#.

To make quantitative predictions, we consider the case of
Ohmic dissipation where the spectral density takes the form
J(v)5(2p\2/d2)ave2v/vc, with a the dimensionless cou-
pling strength andvc a cut-off frequency. Then the bath
correlation functions assume the formQ8(t)5a ln@1
1vc

2t2#12a ln@(\b/pt)sinh(pt/\b)#, Q52a tan21(vct)
@4,5#. Further, we restrict ourselves to the case of a TLS with
zero intrinsic bias (e050).

As a first feature, becauseuJ0(z)u<1, it is apparent that
for a symmetric TLS the effect of a fast asymmetry modula-

tion is an overall reduction of the incoherent tunneling rate
Ge as compared to the static oneG0 whenevera,1/2. On
the contrary, becauseI 0(z)>1, the tunneling rateGd is al-
ways increasedin case II.

Second, we study the modification of the quantum coher-
ent motion by stochastic and driving forces, i.e., we explic-
itly determine the poles of Eq.~12! resulting from the equa-
tion l1k0

1(l;z)50. For our purposes it is convenient to
express the kernelsk0

1(l;z) in terms of the static one
K(l)[ limz→0k0

1(l;z) as

k0
1~l;z!5 (

n52`

`

Hn~z!K~l1 inVz!, ~13!

whereHn(e)5Jn
2(e/Ve), Hn(d)5I n

2(d), and

K~l!5
De

p S \bDe

2p D 122a h~l!

a1\bl/2p
, ~14!

h~l!5G~11a1\bl/2p!/G~12a1\bl/2p!. ~15!

Here we made the high frequency approximationvct@1 in
the correlation functionsQ8(t) andQ9(t), and a necessary
condition for Eq. ~12! becomes\bVz@2pa. Here G(z)
denotes the gamma function andDe5D0(D0 /vc)

a/(12a)

3@cos(pa)G(122a)#1/(222a) is the bath-renormalized tun-
neling splitting whena,1. Using Eq.~14!, the pole equa-
tion predicts for the static case witha<1/2 a destruction of
quantum coherence by bath-induced incoherent transitions
above a transition temperatureT0(a) @4,5#. For a>1/2 the
dynamics is incoherent down toT50. For weak Ohmic
dampinga!1 one has from Eq.~15! that h(l).1. Hence,
the pole equation becomes just a quadratic equation inl and
the transition temperature is determined by the condition of
the solutions being real and degenerate@4,5#. Such a situa-
tion is expected to be strongly modified if the additional
influence of ac field is considered. Taking into account the
high-frequency condition Vz@ulu, up to the order
O(ulu/Vz)

4 and fora!1, we find

k0
1~l;z!5K~l!FH0~z!1S a1\bl/2p

\bVz/2p D 2(
nÞ0

Hn~z!

n2 G .
This equation is of fundamental importance in understanding
the role of driving fields on the tunneling dynamics. Its two
addenda act, in fact, in preserving or suppressing quantum
coherence, respectively. When the first contribution domi-
nates, the effect of a fast field is roughly to renormalize the
effective tunneling matrix elementDe as De→Dz , where
De5DeuJ0(e/Ve)u1/12a andDd5DeI 0(d)

1/12a for case I or
II, respectively. Hence, from static considerations, we find
the transition temperatureTz(a).\Dz /pakB when a!1.
BecauseTe(a)<T0(a), the effect of asymmetry driving is
an overall reduction of quantum coherence@10#. Near the
zeroes ofJ0(e/Ve) quantum coherence is strongly sup-
pressed and the particle tunnels incoherently with rate
Ge5G0(2pa/\bVe)

2(nÞ0Jn
2(e/Ve)/n

2 down toT50. Be-
causeGe,G0!Ve , suppression of tunneling may be stabi-
lized for weak dissipation over several periods of the driving
force in accordance with previous findings@8#. On the other
hand, becauseI 0(d)>1, this simple effect of renormaliza-
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tion of tunneling always holds true in case II. Being
Td(a)>T0(a), quantum coherence is always enhanced in
case II.

Finally, we conclude by discussing theexactlysolvable
case of strong frictiona51/2, which is imperative to under-
standing the role of driving-induced correlations on the TLS
dynamics. Generalizing the technique discussed in Ref.@9#,
the series~3! can indeed be summed up exactly to give for
P(t)5P(a)(t)1P(s)(t) the result

P~a!~ t !5E
0

t

dt2 expS 2E
t2

t

dsg~s! D E
0

t2
dt1D~ t2!D~ t1!

3e2Q8~ t22t1! expS 2E
t1

t2
dsg~s!/2Dsin@g~ t2!

2g~ t1!#,

P~s!~ t !5expS2E
0

t

dsg~s! D , ~16!

where we introduced the relaxation rateg(t)
5pD2(t)/2vc . Here,P

(a)(t) represents the contribution to
P(t) antisymmetric with respect to the bias inversion
«→2«, and determines the long-time dynamics~cf. @9# for
case I!. The investigation of the symmetric contribution
P(s)(t) is, on the other hand, useful to get information on the
transient dynamics. As expected, Eq.~16! predicts that in the
absence of driving a symmetric TLS undergoes, forany tem-
perature, incoherent relaxation~straight line of Fig. 1! with
rateD0

2/2vc5De . Further,P
(s)(t) is not sensible to asym-

metry modulation. The effect of modulation of coupling is
shown in Fig. 1, whereP(s)(t) is depicted for different driv-
ing frequencies. WhenVd.De driving-induced coherent os-
cillations are superimposed onto the incoherent motion
~dashed and dotted lines!. These oscillations successively
vanish as the driving frequency is decreased~dash-dotted
line!. This results in an incoherent relaxation towards equi-
librium, which is faster with respect to the static case.
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FIG. 1. Time-dependent population of a symmetric TLS under
modulation of tunneling coupling for different driving frequencies
and for Ohmic strengtha51/2.

54 R3089DYNAMICS OF THE DISSIPATIVE TWO-STATE . . .


