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Dynamics of the dissipative two-state system under ac modulation of bias and coupling energy

Milena Grifoni
Institut fir Physik, Universita Augsburg, Memminger StralRe 6, 86135 Augsburg, Germany
(Received 17 May 1996

We consider a driven dissipative two-state system subject to periodic modulatimihaff its two param-
eters. The exact master equation that governs the dynamics is derived. Closed form analytical solutions are
presented within the noninteracting-blip approximation for the stochastic forces, and fexatiy solvable
casea=1/2 of the Ohmic viscosity. We apply these results to a tight-binding particle with zero intrinsic bias.
Selection rules are obeyed for arbitrary dissipation. For Ohmic dissipation, the effects of fast asymmetry
modulation result in an overaleductionof quantum coherence and in a possible localization. On the contrary,
a multiplicative modulation of the tunneling coupling leads to an exponestifbncemenbf tunneling.
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The problem of a quantum particle coupled to a thermal 3
bath and tunneling through the barrier of a slightly asymmet- HO)=—5[AMot+e(t) o]
ric double-well potential is ubiquitous in many physical and
chemical systems. It can model for example long range 1 pi 5 5
electron-transfer reactiond], the tunneling of atoms be- +§§ m—+mawaxa—caxadaz . @
tween an atomic-force microscope tip and a surfi@e or ¢
the magnetic flux in a superconducting quantum interference

device_(SQUID)_[3]. At sufficiently low temperatures the_ Here theo's are Pauli matrices, and the eigenstates pére
dynamics only involves the ground states of the potentla{he basis states in a localized representation wheiethe

mi”i”"!a' an(_j the system can be effectively restricted fo th unneling distance. The tunneling splitting energy is given by
two-dimensional Hilbert space spanned by the two groun A(t) while the asymmetry energy #e(t). This time de-

states. This two-level _syste(erS), when |§0_I§1ted from the. pendence of the coupling parameter could arise, for example,
thermal bath, is the simplest system exhibiting quantum "Mrom an ac modulation of the barrier height or width of the

: . . . sL‘fnderlying double-well potential, and could be realized in a
between the eigenstates in the left and .r|ght well. the genéuperconducting loop with two Josephson junctifsis The
erally, the StOCh.aS“C mﬂuence .results in a reduction of the‘t:as,e of a dichotomically fluctuating tunneling coupling in
coherent tunneling motion by incoherent processéss|, bridge-assisted electron-transfer has recently been investi-

and may even Ieao_l to a transition_ to _self-trapping at Zer(bated in[16]. We observe that, as expressed by mBy.be-
temperaturg 6]. An important question is to which degree low, while the effect of asymmetry modulation is additive, a

the tunneling dynamics is influenced by extemally applledbarrier modulation results in eultiplicative (exponential

time-dependent fields. Up to now, only the effects of an ©Xmodification of the coupling parametEt7].

ternal ac field modulating the asymmetry energy between the In the following we derive exact formal solutions for the

localized states were consider@d-13. In particular, a com- dissipative dynamics and discuss closed form solutions

Within the noninteracting-blip approximatidiNIBA) for the
stochastic forces. Selection rules for the asymptotic dynam-

ics are found. Further, for the special cage 1/2 of the

_The transition temperature,_abovg which q“?‘”t“m Q.Oherencﬁhmic viscosity, we obtaiexactresults. We then apply our
|s_d_estro_yed by a stochastic enwronm_ent, IS moqmed by f?indings to study the influence of a periodic modulation of
dr!vmg field [1(_)]'_ A _novel non-Markt_man dynamics may’ the tunneling splitting of aymmetricTLS in an Ohmic en-
arise due to driving induced correlations between tunneling;.onment. In contrast to the case of asymmetry driving,
transitions[9,11,13. The response to the weak coherent sig-yhich implies an overalieductionof quantum coherence by
nal [13,14 or the asymptotic tunneling amplitud&5] may 45t ac fields and a possible localization in one of the tight-
be enhanced for optimal values of the stochastic forces. binding states, we find a possibémhancemenof quantum

In this work we generalize the model to include the pos-coherence, and always an increase in the relaxation rate.
sibility of external(multiplicative or additive modulation of Suppose now that at timés<0 the particle is held at the
the coupling energy between the localized states. As a worksite o-,=1 with the bath having a thermal distribution. We
ing model we consider the time-dependent spin-bosoithen compute the probabilityr,(t))=P(t) at timest=0 for
Hamiltonian where the bath is described as an ensemble afiis factorizing initial state. After tracing out the thermal
harmonic oscillators with a bilinear coupling in the TLS-bath bath, all environmental effects are captured by the twice-
coordinates integrated bath correlation functi¢a,5] (8=1/kgT)

driving field of appropriate frequency and strengtf. This
effect can be stabilized in the presence of dissipdi&h0].
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d2 (= J(w) coshwpBl2]—coshw(B/2—it)] master equation for the probabiliB(t) can be derived from
Q)= ?fo dw o2 SN wB/2] , Eq. (2) as prescribed in Ref12]. It reads
. t
whereJ(w) = (m/2)2 ,(c2/m,w,) 8(w— w,) is the spectral P(t)zf dt'[K)(t,t) — KM (t,t)P(t')], (6)
0

density of the heat bath. Upon summing over the history of
the system'’s visits of the four states of the reduced densit )¢y +7 . .
matrix, we can generalize previous findings for the evolution};\{here the kernel&(t,t") are defined by a series expres-

of an asymmetry driven damped systfonl1,13 to find the sion in gy . ".1 particular, wi_thin the NIBA[4]’.WhiCh is for_-

formal solution in the form of a series in the number Ofmally obtained ngglec_tmg the mf[erbllp correla’qons

time-ordered tunneling transitions. Introducing the notationt*i.k~ 0) and all blip-sojourn correlationsX{ =0 for |

5. =T12" LA(t)), it reads #k+1), the kernels in Eq(6) reduce to the expressions
j: 1

KH(t,t)=e Q= cod Q"(t—t")]CL(t,t),

* t ton t
Py=1+> (—1)ﬂf o|t2nf2 dth,lu-sztl o
i o "o 0 KOt =e @ UsifQ(t—t)]C (L), (7)

%20 S (FLICtH _EIc)y) 2 It is interesting to observe that the polaron transformation

5%y approach discussed 10,16 leads[18], if applied to the
Hamiltonian (1), to a master equation analogous to E),
C("'=5,co8b,,C! )= 5,sind, . (3)  and with kernelq7).

Let us now focus on the effect of ac modulation of the
Here the¢ charges label the two off-diagonal states of theTLS parameters in the driven Hamiltoniéh). We shall as-
reduced density matrix. The phadg, describes the influ- sume the analytic forms

ence of the time-dependent biasing forces,
e(t)=egtecodd t, A(t)=Ayexp scodst), (8)

n

CDan &lg(ty)) —a(ty-1) 1, (4)  whereeg and Ay represent the asymmetry energy and the

=1 tunneling coupling in the absence of driving fields, respec-
tively. The effects of asymmetry modulatidhe., §=0 in
Eg. (8)] have been the object of intense research in the past
years[8—12]. This we shall denote as situation |. For com-
parison, we performed the analysis of the dissipative TLS
dynamics under(on physical grounds smallmodulation
of the tunneling splitting e=0, §<1 in Eq. (8)]. This we
shall indicate as situation Il. Further, we introduce a sub-
script {=e€ or & which, refers to quantities in case | or Il,
whereQ’ (t) andQ"(t) are the real and imaginary part of the respectively. Equatiof6) i§ conveniently solved by Laplace
bath correlation functio®(t), respectively. Denoting aso- tranmsforrpﬁtmn. Introducing the Laplace transfori{)
journsthe periods,;<t'<t,; 4 in which the system isina =/Jodte “'P(t) of P(t), one finds
diagonal state, and aslips the periodsty; _,<t'<t; in .
which the system stays in one of the two off-diagonal states ) p(\)= 1+f dte MK () —K(P (P11, (9)
(cf. Refs.[4,5]), the functionA;  describes the interblip cor- 0
relations of the blip paifj,k}, while the functionX; , de- . )
scribes the correlations of the bljpwith a preceding sojourn  where K{*)(t)= [7dt’e ™ K(=)(t+t',t). For case | or Il
k. Then, all intrablip and interblip correlations nfblips are  the kernelk{*)(t) have the periodicity of the external field

whereg(t) = [dt’e(t"). All the dissipative influences are in
the functionsFE,i) To express them in compact form, we
introduce the function); ,=Q(t;—t,) and

_ ! ! ' '
Aj k= Q) -1 Q- 1,2 Qaj 2k~ Q2 - 1,21

— n n " n
Xik=Q2j k11 Q2j— 1,2~ Q2j = Q2j— 1,244 1>

combined in the expression and can be expanded in Fourier series,
n n j—-1 o
G”:exp( 2 Qa2 2 b6 RP0= 3 kane mes (10
= =5 (= m< o

Upon introducing the influence phases describing the correhence allowing a recursive solutijal]. Some features of
lations between théth sojourn and then—k succeeding the two different realizations can now be discussed

blips, 7, k=2j-k+1"¢jX; . the full influence functions take (i) For a TLS with intrinsic biasey# 0, the asymptotic
the form dynamics is in both cases periodic in time with the periodic-
ity 2m/Q, of the driving force, ie., lim. .P(t)

n =P@Yt) =3 p,e M2t where

F£1+):GnH COS7n k » Fgf):':ﬁ)ta”??n,o- 5
k=0 -
%0 < km(0)
Up to now our results are exact. Further, having captured the po_kg(o) mzo kg (0) Pm.
bath and driving correlations in the influence functions
F(*) and in the coefficientC(™) respectively, the exact and form#0
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i _ + ;
pm:m—%(km(—lmgg)_; kmn(_lmﬂg)pn) '

For case |, within the NIBA, the functiorls, are explicitly
given in[11]. For case Il we obtain

k;(x)z(—l)mAgf dre 2 Q'
0

Q sT
2 5c037 ,

11

XeimQ,;(T/Z)Sir[Q”(T)]Sin(607')|m(
kr_;()\):(_l)mASJ‘ ‘dTe—)\T—Q/(T)
0

_ QO
X e 15 (12)c0d Q'(7) Jcog e m( 25cos—57) :

2
wherel ,(z) denotes the modified Bessel function.

(ii) For asymmetricTLS, spatial symmetry properties of
the kernelsk,,(\) imply that all the Fourier components of
P@s)t) with evenindex vanish in case[l11]. We find here
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tion is an overall reduction of the incoherent tunneling rate
I'. as compared to the static ofig whenevera<<1/2. On
the contrary, becaudg(z)=1, the tunneling ratd’ 5 is al-
waysincreasedin case Il.

Second, we study the modification of the quantum coher-
ent motion by stochastic and driving forces, i.e., we explic-
itly determine the poles of Eq12) resulting from the equa-
tion N+Kkg (N;¢)=0. For our purposes it is convenient to
express the kernel&, (\;¢) in terms of the static one
IC()\)EIimg_,Okg(h;é“) as

kg (0= 2 Ha(OK(+inQy),

(13
whereH,(€)=J2(e/Q,), Hy(8)=13(5), and
A [RBATTE h(\)
k=125 ) atipnzn 1Y

h(M)=T(1+a+aBN27)IT'(1—a+hBN27). (15

Here we made the high frequency approximatigyr>1 in

that all the harmonics vanish in case Il. We note that theln® correlation function®'(7) andQ"(7), and a necessary
same selection rules are known to hold in driven classicafondition for Eq.(12) becomesh () ,>2ma. Here I'(2)

symmetric systemgl9].
(iii) As shown by Eqgs(6) or (9), the transient as well as

denotes the gamma function ami,=Ay(Ag/we) ™
X[ cos@ra)['(1—2a) 1?29 is the bath-renormalized tun-

the long-time dynamics depends on a complicated interplaf?€ling splitting whena<1. Using Eq.(14), the pole equa-
between the stochastic and driving forces. Some simplificalon predicts for the static case with=1/2 a destruction of
tions are allowed when a separation of time scales is pogjuantum coherence by bath-induced incoherent transitions
sible. Here we shall focus on the interesting high frequency@bove a transition temperatug(a) [4,5]. For «=1/2 the
regime),>r ! where 7 is the characteristic time of the dynamics is incoherent down @=0. For weak Ohmic

transient dynamics. In this approximation, the kerr¢{s’
X(t) in Eqg. (9 can be substituted with their average
ko (\) over a period. One obtain$or convenience we ex-
plicitly indicate the field dependenge

. Ltk (MO

VTG (42

where the conditiorf),> 7 *=|\| has to be proofed self-

consistently. Thus, a fast field suppresses the periodic long- Ko (\;)=K(\)
time oscillations, and the TLS approaches incoherently the

steady valuepy=Kg (0;¢)/kg(0;¢) with relaxation rate
kg(o;g)zl“g. For case Il the relaxation ralés is immedi-
ately evaluated from Ed11). For case |, the corresponding
rate I', is obtained again from Eq(1l) by substituting

[ 9(25cos@)s712)) with Jo((2€/Q2)sin(772)), whereJy(z)

dampingae<1 one has from Eq(15) thath(\)=1. Hence,
the pole equation becomes just a quadratic equatianand

the transition temperature is determined by the condition of
the solutions being real and degenerf@b|. Such a situa-
tion is expected to be strongly modified if the additional
influence of ac field is considered. Taking into account the
high-frequency condition Q,>|\|, up to the order
O(|\/Q)* and fora<1, we find

a+hBN2T

o Ha(0
> 2

n#0

Ho({)+

This equation is of fundamental importance in understanding
the role of driving fields on the tunneling dynamics. Its two
addenda act, in fact, in preserving or suppressing quantum
coherence, respectively. When the first contribution domi-
nates, the effect of a fast field is roughly to renormalize the

is the zero order Bessel function of first kind. Finally, in the effective tunneling matrix elemenk, as A,—A,, where

limit {—0 the modified rated”, reduce to the static one
'y [4,5].

A =AIo(el Q)Y * and A 5= Al o(5)Y* for case | or
I, respectively. Hence, from static considerations, we find

To make gquantitative predictions, we consider the case othe transition temperaturé,(a)=aA,/makg when a<1.
Ohmic dissipation where the spectral density takes the fornBecauseT .(a)<Ty(«), the effect of asymmetry driving is

J(w)=(27h%d?) awe™ “/“c, with « the dimensionless cou-
pling strength andw. a cut-off frequency. Then the bath
correlation functions assume the for@'(7)=a IN[1
+ 0272+ 2a In[ (2Bl w7)sinh@dhp)], Q=2a tan Y we7)

an overall reduction of quantum cohererdd]. Near the
zeroes ofJy(e/Q},) quantum coherence is strongly sup-
pressed and the particle tunnels incoherently with rate
T =To2maltBQ)?S,.0d2(e/Q)/n? down toT=0. Be-

[4,5]. Further, we restrict ourselves to the case of a TLS withcausel’ ,.<I'y<(}., suppression of tunneling may be stabi-

zero intrinsic bias §,=0).

lized for weak dissipation over several periods of the driving

As a first feature, becaugéy(z)|<1, it is apparent that force in accordance with previous findinf). On the other
for a symmetric TLS the effect of a fast asymmetry modula-hand, becauséy(8)=1, this simple effect of renormaliza-
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tion of tunneling always holds true in case Il. Being 1 T T
Ts(a)=Ty(a), quantum coherence is always enhanced in a= 1/2
case Il. \\ static case

Finally, we conclude by discussing tlexactly solvable \\\ ,/ 0=0.5
case of strong frictiony=1/2, which is imperative to under- LN
standing the role of driving-induced correlations on the TLS 35 o5 L A e A =010, -
dynamics. Generalizing the technique discussed in R&f. R ) %000 cT
the serieg3) can indeed be summed up exactly to give for
P(t)=P®@(t)+PO)(t) the result

t t ty
P<a)(t)=fodt2exp(—ft dsﬂs)) fo dt;A(t,)A(ty)
2

, to
xe Q271 exp( —f dSy(s)IZ)sir[g(tz)
t FIG. 1. Time-dependent population of a symmetric TLS under
—g(ty], modulation of tunneling coupling for different driving frequencies
and for Ohmic strengtlax=1/2.

t
P(S>(t)=ex;{—f dsﬂs)), (16)  metry modulation. The effect of modulation of coupling is

0 shown in Fig. 1, wher®(®)(t) is depicted for different driv-
ing frequencies. Whefl ;> A, driving-induced coherent os-
cillations are superimposed onto the incoherent motion
(dashed and dotted linesThese oscillations successively
vanish as the driving frequency is decreagddsh-dotted
line). This results in an incoherent relaxation towards equi-
librium, which is faster with respect to the static case.

where we introduced the relaxation ratey(t)
=mwA%(t)/2w.. Here,P®(t) represents the contribution to
P(t) antisymmetric with respect to the bias inversion
£— —eg, and determines the long-time dynamics$. [9] for
case ). The investigation of the symmetric contribution
PO)(t) is, on the other hand, useful to get information on the
transient dynamics. As expected, Eff) predicts that in the It is a pleasure to thank P.Hggi and F. Sols for useful
absence of driving a symmetric TLS undergoes,aioytem-  discussions. This work was supported by the Deutsche For-
perature, incoherent relaxatigatraight line of Fig. 1 with  schungsgemeinschaft and by the Germany-Spain programme
rate A3/2w.=A,. Further,PO)(t) is not sensible to asym- “Acciones Integradas”(DAAD).
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